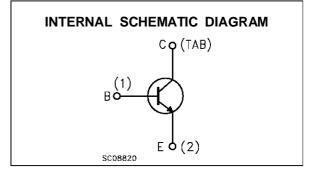

2N3055


SILICON NPN TRANSISTOR

SGS-THOMSON PREFERRED SALESTYPE

DESCRIPTION

The 2N3055 is a silicon epitaxial-base NPN transistor in Jedec TO-3 metal case. It is intended for power switching circuits, series and shunt regulators, output stages and high fidelity amplifiers.

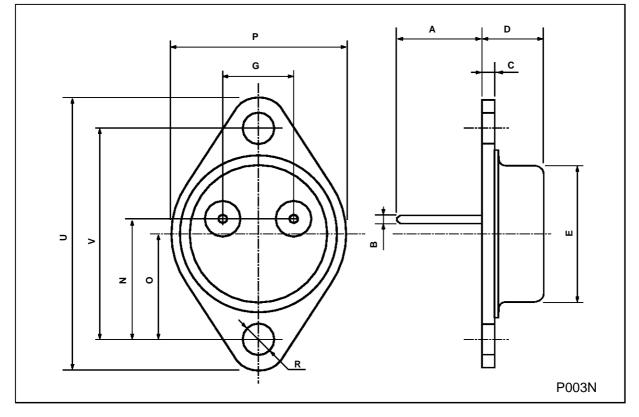
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage $(I_E = 0)$	100	V
VCER	Collector-Emitter Voltage ($R_{BE} = 100\Omega$)	70	V
V _{CEO}	Collector-Emitter Voltage $(I_B = 0)$	60	V
Vebo	Emitter-Base Voltage ($I_C = 0$)	7	V
Ι _C	Collector Current	15	A
IB	Base Current	7	A
Ptot	Total Dissipation at $T_c \le 25$ °C	115	W
Tstg	Storage Temperature	-65 to 200	°C
Tj	Max. Operating Junction Temperature	200	°C

THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case	Max 1	5 °C/W
--	-------	--------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \, {}^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEV}	Collector Cut-off Current (V _{BE} = -1.5V)	$V_{CE} = 100 V$ $V_{CE} = 100 V$ $T_j = 150 \ ^{o}C$			1 5	mA mA
I _{CEO}	Collector Cut-off Current ($I_B = 0$)	V _{CE} = 30 V			0.7	mA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{EB} = 7 V			5	mA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage	I _C = 200 mA	60			V
$V_{CER(sus)^*}$	Collector-Emitter Sustaining Voltage	$I_C = 200 \text{ mA}$ $R_{BE} = 100 \Omega$	70			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = 4 A$ $I_{B} = 400 mA$ $I_{C} = 10 A$ $I_{B} = 3.3 A$			1 3	V V
V _{BE} *	Base-Emitter Voltage	$I_C = 4 A$ $V_{CE} = 4 V$			1.5	V
h _{FE} *	DC Current Gain	$ \begin{array}{ll} I_{C} = 0.5 \ A & V_{CE} = 4 \ V & Group \ 4 \\ I_{C} = 0.5 \ A & V_{CE} = 4 \ V & Group \ 5 \\ I_{C} = 0.5 \ A & V_{CE} = 4 \ V & Group \ 6 \\ I_{C} = 0.5 \ A & V_{CE} = 4 \ V & Group \ 7 \\ I_{C} = 4 \ A & V_{CE} = 4 \ V \\ I_{C} = 10 \ A & V_{CE} = 4 \ V \\ \end{array} $	20 35 60 120 20 5		50 75 145 250 70	
$h_{FE1}/h_{FE1}*$	DC Current Gain	$I_{C} = 0.5 \text{ A}$ $V_{CE} = 4 \text{ V}$			1.6	
f⊤	Transition frequency	$I_C = 1 A$ $V_{CE} = 4 V$	2.5			MHz
I _{s/b} *	Second Breakdown Collector Current	V _{CE} = 40 V	2.87			A

* Pulsed: Pulse duration = $300 \,\mu$ s, duty cycle 1.5 %

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		11.7			0.460	
В	0.96		1.10	0.037		0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
Ν		16.9			0.665	
Ρ			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.50			1.555
V		30.10			1.185	

SGS-THOMSON MICROELECTRONICS

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectrorics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

